Functional production and reconstitution of the human equilibrative nucleoside transporter (hENT1) in Saccharomyces cerevisiae. Interaction of inhibitors of nucleoside transport with recombinant hENT1 and a glycosylation-defective derivative (hENT1/N48Q).
نویسندگان
چکیده
We have produced recombinant human equilibrative nucleoside transporter (hENT1) in the yeast Saccharomyces cerevisiae and have compared the binding of inhibitors of equilibrative nucleoside transport with the wild-type transporter and a N-glycosylation-defective mutant transporter. Equilibrium binding of 3H-labelled nitrobenzylmercaptopurine ribonucleoside {6-[(4-nitrobenzyl)thio]-9-beta-d-ribofuranosyl purine; NBMPR} to hENT1-producing yeast revealed a single class of high-affinity sites that were shown to be in membrane fractions by (1) equilibrium binding (means+/-S.D.) of [3H]NBMPR to intact yeast (Kd 1.2+/-0.2 nM; Bmax 5.0+/-0.5 pmol/mg of protein) and membranes (Kd 0.7+/-0.2 nM; Bmax 6.5+/-1 pmol/mg of protein), and (2) reconstitution of hENT1-mediated [3H]thymidine transport into proteoliposomes that was potently inhibited by NBMPR. Dilazep and dipyridamole inhibited NBMPR binding to hENT1 with IC50 values of 130+/-10 and 380+/-20 nM respectively. The role of N-linked glycosylation in the interaction of NBMPR with hENT1 was examined by the quantification of binding of [3H]NBMPR to yeast producing either wild-type hENT1 or a glycosylation-defective mutant (hENT1/N48Q) in which Asn-48 was converted into Gln. The Kd for binding of NBMPR to hENT1/N48Q was 10. 5+/-1.6 nM, indicating that the replacement of an Asn residue with Gln decreased the affinity of hENT1 for NBMPR. The decreased affinity of hENT1/N48Q for NBMPR was due to an increased rate of dissociation (koff) and a decreased rate of association (kon) of specifically bound [3H]NBMPR because the values for hENT1-producing and hENT1/N48Q-producing yeast were respectively 0.14+/-0.02 and 0. 36+/-0.05 min-1 for koff, and (1.2+/-0.1)x10(8) and (0.40+/-0. 04)x10(8) M-1.min-1 for kon. These results indicated that the conservative conversion of an Asn residue into Gln at position 48 of hENT1 and/or the loss of N-linked glycosylation capability altered the binding characteristics of the transporter for NBMPR, dilazep and dipyridamole.
منابع مشابه
N-linked glycosylation of N48 is required for equilibrative nucleoside transporter 1 (ENT1) function
Human equilibrative nucleoside transporter 1 (hENT1) transports nucleosides and nucleoside analogue drugs across cellular membranes and is necessary for the uptake of many anti-cancer, anti-parasitic and anti-viral drugs. Previous work, and in silico prediction, suggest that hENT1 is glycosylated at Asn(48) in the first extracellular loop of the protein and that glycosylation plays a role in co...
متن کاملA comparison of the transportability, and its role in cytotoxicity, of clofarabine, cladribine, and fludarabine by recombinant human nucleoside transporters produced in three model expression systems.
2-Chloro-9-(2'-deoxy-2'-fluoro-beta-d-arabinofuranosyl)adenine (Cl-F-ara-A, clofarabine), a purine nucleoside analog with structural similarity to 2-chloro-2'-deoxyadenosine (Cl-dAdo, cladribine) and 9-beta-d-arabinofuranosyl-2-fluoroadenine (F-ara-A, fludarabine), has activity in adult and pediatric leukemias. Mediated transport of the purine nucleoside analogs is believed to occur through the...
متن کاملThe role of human equilibrative nucleoside transporter 1 on the cellular transport of the DNA methyltransferase inhibitors 5-azacytidine and CP-4200 in human leukemia cells.
The nucleoside analog 5-azacytidine is an archetypical drug for epigenetic cancer therapy, and its clinical effectiveness has been demonstrated in the treatment of myelodysplastic syndromes (MDS) and acute myelogenous leukemia (AML). However, therapy resistance in patients with MDS/AML remains a challenging issue. Membrane proteins that are involved in drug uptake are potential mediators of dru...
متن کاملRole of human nucleoside transporters in the cellular uptake of two inhibitors of IMP dehydrogenase, tiazofurin and benzamide riboside.
Benzamide riboside (BR) and tiazofurin (TR) are converted to analogs of NAD that inhibit IMP dehydrogenase (IMPDH), resulting in cellular depletion of GTP and dGTP and inhibition of proliferation. The current work was undertaken to identify the human nucleoside transporters involved in cellular uptake of BR and TR and to evaluate their role in cytotoxicity. Transportability was examined in Xeno...
متن کاملFLT3 is implicated in cytarabine transport by human equilibrative nucleoside transporter 1 in pediatric acute leukemia
FLT3 abnormalities are negative prognostic markers in acute leukemia. Infant leukemias are a subgroup with frequent MLL (KMT2A) rearrangements, FLT3 overexpression and high sensitivity to cytarabine, but dismal prognosis. Cytarabine is transported into cells by Human Equilibrative Nucleoside Transporter-1 (hENT1, SLC29A1), but the mechanisms that regulate hENT1 in acute leukemia have been scarc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 339 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1999